PLNnetworkfamily
)R/PLNnetworkfamily-S3methods.R
plot.PLNnetworkfamily.Rd
Display various outputs (goodness-of-fit criteria, robustness, diagnostic) associated with a collection of PLNnetwork fits (a PLNnetworkfamily
)
an R6 object with class PLNnetworkfamily
a character, either "criteria", "stability" or "diagnostic" for the type of plot.
vector of characters. The criteria to plot in c("loglik", "BIC", "ICL", "R_squared", "EBIC", "pen_loglik").
Default is c("loglik", "pen_loglik", "BIC", "EBIC"). Only relevant when type = "criteria"
.
A logical indicating whether to plot the value of the criteria in the "natural" direction (loglik - 0.5 penalty) or in the "reverse" direction (-2 loglik + penalty). Default to FALSE, i.e use the natural direction, on the same scale as the log-likelihood.
logical: should the x-axis be represented in log-scale? Default is TRUE
.
scalar: the targeted level of stability in stability plot. Default is .9.
additional parameters for S3 compatibility. Not used
Produces either a diagnostic plot (with type = 'diagnostic'
), a stability plot
(with type = 'stability'
) or the evolution of the criteria of the different models considered
(with type = 'criteria'
, the default).
The BIC and ICL criteria have the form 'loglik - 1/2 * penalty'
so that they are on the same scale as the model log-likelihood. You can change this direction and use the alternate form '-2*loglik + penalty', as some authors do, by setting reverse = TRUE
.
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
#>
#> Initialization...
#> Adjusting 30 PLN with sparse inverse covariance estimation
#> Joint optimization alternating gradient descent and graphical-lasso
#> sparsifying penalty = 7.541317
sparsifying penalty = 6.965695
sparsifying penalty = 6.43401
sparsifying penalty = 5.942907
sparsifying penalty = 5.48929
sparsifying penalty = 5.070297
sparsifying penalty = 4.683286
sparsifying penalty = 4.325815
sparsifying penalty = 3.995629
sparsifying penalty = 3.690646
sparsifying penalty = 3.408942
sparsifying penalty = 3.148741
sparsifying penalty = 2.9084
sparsifying penalty = 2.686404
sparsifying penalty = 2.481353
sparsifying penalty = 2.291954
sparsifying penalty = 2.117011
sparsifying penalty = 1.955421
sparsifying penalty = 1.806166
sparsifying penalty = 1.668303
sparsifying penalty = 1.540962
sparsifying penalty = 1.423342
sparsifying penalty = 1.3147
sparsifying penalty = 1.21435
sparsifying penalty = 1.121659
sparsifying penalty = 1.036044
sparsifying penalty = 0.9569638
sparsifying penalty = 0.8839195
sparsifying penalty = 0.8164507
sparsifying penalty = 0.7541317
#> Post-treatments
#> DONE!
if (FALSE) {
plot(fits)
}