R/ZIPLNfit-class.R
ZIPLNfit_sparse.RdAn R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual covariance
An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual covariance
PLNmodels::ZIPLNfit -> ZIPLNfit_sparse
penaltythe global level of sparsity in the current model
penalty_weightsa matrix of weights controlling the amount of penalty element-wise.
n_edgesnumber of edges if the network (non null coefficient of the sparse precision matrix)
nb_param_plnnumber of parameters in the PLN part of the current model
vcov_modelcharacter: the model used for the residual covariance
pen_loglikvariational lower bound of the l1-penalized loglikelihood
EBICvariational lower bound of the EBIC
densityproportion of non-null edges in the network
criteriaa vector with loglik, penalized loglik, BIC, EBIC, ICL, R_squared, number of parameters, number of edges and graph density
latent_network()Extract interaction network in the latent space
ZIPLNfit_sparse$latent_network(type = c("partial_cor", "support", "precision"))plot_network()plot the latent network.
typeedge value in the network. Either "precision" (coefficient of the precision matrix) or "partial_cor" (partial correlation between species).
outputOutput type. Either igraph (for the network) or corrplot (for the adjacency matrix)
edge.colorLength 2 color vector. Color for positive/negative edges. Default is c("#F8766D", "#00BFC4"). Only relevant for igraph output.
remove.isolatedif TRUE, isolated node are remove before plotting. Only relevant for igraph output.
node.labelsvector of character. The labels of the nodes. The default will use the column names ot the response matrix.
layoutan optional igraph layout. Only relevant for igraph output.
plotlogical. Should the final network be displayed or only sent back to the user. Default is TRUE.
if (FALSE) { # \dontrun{
# See other examples in function ZIPLN
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera, control= ZIPLN_param(penalty = 1))
class(myPLN)
print(myPLN)
plot(myPLN)
} # }