Extract and plot the network (partial correlation, support or inverse covariance) from a ZIPLNfit_sparse object

# S3 method for class 'ZIPLNfit_sparse'
plot(
  x,
  type = c("partial_cor", "support"),
  output = c("igraph", "corrplot"),
  edge.color = c("#F8766D", "#00BFC4"),
  remove.isolated = FALSE,
  node.labels = NULL,
  layout = layout_in_circle,
  plot = TRUE,
  ...
)

Arguments

x

an R6 object with class ZIPLNfit_sparse

type

character. Value of the weight of the edges in the network, either "partial_cor" (partial correlation) or "support" (binary). Default is "partial_cor".

output

the type of output used: either 'igraph' or 'corrplot'. Default is 'igraph'.

edge.color

Length 2 color vector. Color for positive/negative edges. Default is c("#F8766D", "#00BFC4"). Only relevant for igraph output.

remove.isolated

if TRUE, isolated node are remove before plotting. Only relevant for igraph output.

node.labels

vector of character. The labels of the nodes. The default will use the column names ot the response matrix.

layout

an optional igraph layout. Only relevant for igraph output.

plot

logical. Should the final network be displayed or only sent back to the user. Default is TRUE.

...

Not used (S3 compatibility).

Value

Send back an invisible object (igraph or Matrix, depending on the output chosen) and optionally displays a graph (via igraph or corrplot for large ones)

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fit <- ZIPLN(Abundance ~ 1, data = trichoptera, control = ZIPLN_param(penalty = 0.1))
#> 
#>  Initialization...
#>  Adjusting a ZI-PLN model with sparse covariance model and single specific parameter(s) in Zero inflation component.
#>  DONE!
if (FALSE) { # \dontrun{
plot(fit)
} # }