PLNnetworkfit
objectR/PLNnetworkfit-S3methods.R
plot.PLNnetworkfit.Rd
Extract and plot the network (partial correlation, support or inverse covariance) from a PLNnetworkfit
object
an R6 object with class PLNnetworkfit
character. Value of the weight of the edges in the network, either "partial_cor" (partial correlation) or "support" (binary). Default is "partial_cor"
.
the type of output used: either 'igraph' or 'corrplot'. Default is 'igraph'
.
Length 2 color vector. Color for positive/negative edges. Default is c("#F8766D", "#00BFC4")
. Only relevant for igraph output.
if TRUE
, isolated node are remove before plotting. Only relevant for igraph output.
vector of character. The labels of the nodes. The default will use the column names ot the response matrix.
an optional igraph layout. Only relevant for igraph output.
logical. Should the final network be displayed or only sent back to the user. Default is TRUE
.
Not used (S3 compatibility).
Send back an invisible object (igraph or Matrix, depending on the output chosen) and optionally displays a graph (via igraph or corrplot for large ones)
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
#>
#> Initialization...
#> Adjusting 30 PLN with sparse inverse covariance estimation
#> Joint optimization alternating gradient descent and graphical-lasso
#> sparsifying penalty = 7.264447
sparsifying penalty = 6.709958
sparsifying penalty = 6.197792
sparsifying penalty = 5.72472
sparsifying penalty = 5.287757
sparsifying penalty = 4.884147
sparsifying penalty = 4.511344
sparsifying penalty = 4.166997
sparsifying penalty = 3.848934
sparsifying penalty = 3.555148
sparsifying penalty = 3.283787
sparsifying penalty = 3.033138
sparsifying penalty = 2.801621
sparsifying penalty = 2.587776
sparsifying penalty = 2.390253
sparsifying penalty = 2.207807
sparsifying penalty = 2.039287
sparsifying penalty = 1.88363
sparsifying penalty = 1.739854
sparsifying penalty = 1.607053
sparsifying penalty = 1.484388
sparsifying penalty = 1.371086
sparsifying penalty = 1.266432
sparsifying penalty = 1.169766
sparsifying penalty = 1.080479
sparsifying penalty = 0.998007
sparsifying penalty = 0.9218299
sparsifying penalty = 0.8514675
sparsifying penalty = 0.7864757
sparsifying penalty = 0.7264447
#> Post-treatments
#> DONE!
myNet <- getBestModel(fits)
if (FALSE) { # \dontrun{
plot(myNet)
} # }