R/PLNnetworkfit-class.R
PLNnetworkfit.Rd
The function PLNnetwork()
produces a collection of models which are instances of object with class PLNnetworkfit
.
This class comes with a set of methods, some of them being useful for the user:
See the documentation for plot()
and methods inherited from PLNfit
.
The function PLNnetwork()
, the class PLNnetworkfamily
PLNmodels::PLNfit
-> PLNmodels::PLNfit_fixedcov
-> PLNnetworkfit
vcov_model
character: the model used for the residual covariance
penalty
the global level of sparsity in the current model
penalty_weights
a matrix of weights controlling the amount of penalty element-wise.
n_edges
number of edges if the network (non null coefficient of the sparse precision matrix)
nb_param
number of parameters in the current PLN model
pen_loglik
variational lower bound of the l1-penalized loglikelihood
EBIC
variational lower bound of the EBIC
density
proportion of non-null edges in the network
criteria
a vector with loglik, penalized loglik, BIC, EBIC, ICL, R_squared, number of parameters, number of edges and graph density
optimize()
Call to the C++ optimizer and update of the relevant fields
latent_network()
Extract interaction network in the latent space
PLNnetworkfit$latent_network(type = c("partial_cor", "support", "precision"))
plot_network()
plot the latent network.
type
edge value in the network. Either "precision" (coefficient of the precision matrix) or "partial_cor" (partial correlation between species).
output
Output type. Either igraph
(for the network) or corrplot
(for the adjacency matrix)
edge.color
Length 2 color vector. Color for positive/negative edges. Default is c("#F8766D", "#00BFC4")
. Only relevant for igraph output.
remove.isolated
if TRUE
, isolated node are remove before plotting. Only relevant for igraph output.
node.labels
vector of character. The labels of the nodes. The default will use the column names ot the response matrix.
layout
an optional igraph layout. Only relevant for igraph output.
plot
logical. Should the final network be displayed or only sent back to the user. Default is TRUE
.
if (FALSE) { # \dontrun{
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
nets <- PLNnetwork(Abundance ~ 1, data = trichoptera)
myPLNnet <- getBestModel(nets)
class(myPLNnet)
print(myPLNnet)
} # }