PLNnetworkfit
sR/PLNnetworkfamily-class.R
PLNnetworkfamily.Rd
The function PLNnetwork()
produces an instance of this class.
This class comes with a set of methods mostly used to compare
network fits (in terms of goodness of fit) or extract one from
the family (based on penalty parameter and/or goodness of it).
See the documentation for getBestModel()
,
getModel()
and plot() for the user-facing ones.
The function PLNnetwork()
, the class PLNnetworkfit
PLNmodels::PLNfamily
-> PLNmodels::Networkfamily
-> PLNnetworkfamily
Inherited methods
PLNmodels::PLNfamily$getModel()
PLNmodels::PLNfamily$postTreatment()
PLNmodels::PLNfamily$print()
PLNmodels::Networkfamily$coefficient_path()
PLNmodels::Networkfamily$getBestModel()
PLNmodels::Networkfamily$optimize()
PLNmodels::Networkfamily$plot()
PLNmodels::Networkfamily$plot_objective()
PLNmodels::Networkfamily$plot_stars()
PLNmodels::Networkfamily$show()
new()
Initialize all models in the collection
PLNnetworkfamily$new(penalties, data, control)
penalties
a vector of positive real number controlling the level of sparsity of the underlying network.
data
a named list used internally to carry the data matrices
control
a list for controlling the optimization.
Update current PLNnetworkfit
with smart starting values
stability_selection()
Compute the stability path by stability selection
PLNnetworkfamily$stability_selection(
subsamples = NULL,
control = PLNnetwork_param()
)
subsamples
a list of vectors describing the subsamples. The number of vectors (or list length) determines the number of subsamples used in the stability selection. Automatically set to 20 subsamples with size 10*sqrt(n)
if n >= 144
and 0.8*n
otherwise following Liu et al. (2010) recommendations.
control
a list controlling the main optimization process in each call to PLNnetwork()
. See PLNnetwork()
and PLN_param()
for details.
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
#>
#> Initialization...
#> Adjusting 30 PLN with sparse inverse covariance estimation
#> Joint optimization alternating gradient descent and graphical-lasso
#> sparsifying penalty = 7.264447
sparsifying penalty = 6.709958
sparsifying penalty = 6.197792
sparsifying penalty = 5.72472
sparsifying penalty = 5.287757
sparsifying penalty = 4.884147
sparsifying penalty = 4.511344
sparsifying penalty = 4.166997
sparsifying penalty = 3.848934
sparsifying penalty = 3.555148
sparsifying penalty = 3.283787
sparsifying penalty = 3.033138
sparsifying penalty = 2.801621
sparsifying penalty = 2.587776
sparsifying penalty = 2.390253
sparsifying penalty = 2.207807
sparsifying penalty = 2.039287
sparsifying penalty = 1.88363
sparsifying penalty = 1.739854
sparsifying penalty = 1.607053
sparsifying penalty = 1.484388
sparsifying penalty = 1.371086
sparsifying penalty = 1.266432
sparsifying penalty = 1.169766
sparsifying penalty = 1.080479
sparsifying penalty = 0.998007
sparsifying penalty = 0.9218299
sparsifying penalty = 0.8514675
sparsifying penalty = 0.7864757
sparsifying penalty = 0.7264447
#> Post-treatments
#> DONE!
class(fits)
#> [1] "PLNnetworkfamily" "Networkfamily" "PLNfamily" "R6"